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Abstract 

We investigate the evolution of matter density perturbations in a Universe with 

a cosmological term that decreases’ with time as A CC uBm. For fixed values of 02m0 

the power spectrum is constructed and we show that it is only slightly modified when 

the parameter m is changed from m = 0 to m = 2. Some properties concerning the 

peculiar velocity field are also discussed. 
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1 Introduction 

In spite of its theoretical appeal and remarkable agreement with several sets of ob- 

servational data, it is nowadays quite generally accepted that the standard cold dark 

matter (CDM) modell’] must be modified in at least one of its basic assumptions. 

The main reason is that this model predicts less power in the perturbation spectrum 

at large scales (1 > IOh-‘~Upc) than inferred from observations.121 We can find in the 

literature three important attempts to correct the standard CDM model deficiencies 

while preserving its qualities. In the first one, generally called “tilted models”[31*[41 , 

a non flat primordial power spectrum (with more power in large scales) is assumed. 

A modification ,in the power spectrum index naturally appears in some inflation- 

ary models141. A mixture of hot and cold dark matter in a flat space has also been 

proposed151 , but it is still not clear if these models are completely consistent with 

observations.161 Finally, flat, low energy density models with a cosmological constant 

are also an alternative to the standard CDM model.121*171 

The present interest in the flat cosmological constant model has also appeared 

motivated by two other reasons. First, a A term helps to reconcile inflation with . 
observations. This term could be responsible for the missing mass necessary to “close” 

the universe. Second, with A, it is possible to obtain, for flat universes, a theoretical 

age in the observed range, even for a high value of the Hubble parameter.1’1 

In this paper we shall examine a variant of the cosmological constant model. By 

introducing a new parameter m, we will explore the possibility that the cosmological 

term decreases with time as A o( a-“” . Here a is the scale factor of the FRW models. 

Cosmological models with different expressions for the A term have recently been 

proposed.lgl The dependence on a we use here for the cosmological term, was first 

introduced by Gasperinillol and generalizes the m = 2 case, suggested by Chen and 
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In this work, we study how the evolution of density perturbations is affected by m. 

We solve the equations for the CDM density contrast in the presence of the decaying 

A for arbitrary values of m. With this solution, we construct the power spectrum and 

show that it is only slightly modified when m is changed from m = 0 to m = 2. 

The paper is organized as follows: In section 2, the assumptions and basic equa- 

tions of our models are presented and we discuss how A decay models can be viewed 

as an alternative to implement “exotic” or “loitering” cosmologies. In section 3, the 

evolution of density perturbations is obtained and previous results concerning the 

peculiar velocity field are generalized. In section 4 we construct the power spectrum 

for different values of m and S&,0, and analyze the results. 

2 Decaying Vacuum Cosmological Models 

We investigate spatially flat, homogeneous and isotropic cosmologies with a vari- 

able cosmological term. The cosmic fluid is assumed to be a non interacting mixture 

of some kind of,cold dark matter and radiation (pt = $p,). As a first approximation 

baryons are not taken into account. 

The total energy momentum tensor of the cosmic fluid has the perfect fluid form, 

TP v = Trpy + T& = diag (A -P, -P, -PI, (1) 

where p = pp + pm is the total energy density ( radiation plus CDhl) and p = p,. is 

the thermodynamic pressure. 

The behavior of the fluid is governed by Einstein equations with the cosmological 

term : 

G@’ = 8rG TV’” + AgPV. (2) 
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We shall assume A to be a time dependent quantity having the following dependence 

on the scale factor a , 

A = 8&p, = 3cYa-m* (3) 

For the sake of simplicity we shall restrict the parameters Q and m to the range 

0 5 m 2 2 and o 2 0 . The factor 3 was introduced in equation (3) for mathematical 

convenience. 

We also assume that vacuum decays only into relativistic particles ( non necessarily 

photons), such that the matter energy momentum tensor is conserved (pm CC oS3). 

Hence, due to the A decay, radiation is no longer conserved and it is straightforward 

to show that Bianchi identities imply, 

Pt = fLoH$p + 3mo -m 
8?rG(4 - m)’ ’ 

where C.Q is the present value of the scale factor and Ho = lOOh-‘Kms-‘Mpc-’ is 

the present value of the Hubble parameter. In the following, subscripts 0 will always 

indicate present values. 

The first term on the right hand of (4) is the usual conserved radiation term 

with Q, = 4.3 x 10V5h-* standing for the present value of its density parameter (we 

are considering photons and three neutrino species). The second term is related to 

particle creation and arises due the vacuum decay. 

The Einstein equations reduce to two equations, namely, 

and ii - = -fQmoH; 3 

-I- 
cy(2 - m) 

a 2 
nzOH; (6) 
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where R,,,a is the matter density parameter and n,e = aaH,7’aY”. The above equations (4-m) 
were written in a suitable form to be compared with those derived in other models. 

For instance, if m = 0, we recover the usual flat FRW models with a cosmological 

constant. Further, if we take m = 2, we may identify (5) and (6) with Einstein 

equations of open FRW models. In fact what we have is not a open model. Remember 

that although the equations are formally the same, here the space is flat. The same 

kind of equations also appear in some cosmic string models.l’*l 

As a matter of fact, we would obtain the above equations if we had considered 

conserved matter, radiation and a fluid with the equation of state, p, = (5 - 1) Pz 

, (0 < m < 2) . . Some aspects of these models were analyzed in references [13] and 

[14]. When the space curvature is positive they are usually called loitering universes. 

In this case, the models have a loitering phase in which a=ii= 0 . For flat models, 

however, only ii= 0 is possible (coasting models). Anyway, we remark that vacuum 

decay models can be thought as another form to implement loitering universes. 

3 Perturbation Growth and Peculiar Velocity 

Our next step is to describe the evolution of perturbations in models with decaying 

A. These models show three distinct phases according to the dominant component 

of the energy density in that phase: conserved radiation, matter, or vacuum with its 

light decay products - thereafter called s-component. 

For perturbations well inside the horizon, Newtonian gravity can be applied and, 

the equation describing the evolution of the CDM component density contrast , 6 = 

h, is P51 
Pm 

8 +2: ii -47&p,.& = 0. (7) 
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The solution of (7) depends on the expansion rate i, which, in turn, will depend 

on the relative contributions of radiation, matter and vacuum to the energy density. 

It is useful to consider two different regimes. In the first one, conserved radiation 

or matter is dominant, the x-component contribution remains always the smallest 

among the three and may be neglected. In the second one, we consider the dominant 

contributions of matter and x-component, the conserved radiation term is now much 

smaller than the dominant contributions and may be ignored. 

During the first epoch, in which matter and conserved radiation are dominant, we 

change the variable to y = $ , where ueg = $$us is the scale factor value of the 

conserved radiation and matter equality , and using the field equations, we get 

gt + 2 + 3y sl 3s 
2y(l+ y) - 2y(l+ y) = O- 

The derivatives are now taken with respect to y . Equation (8) has 

independent solutions, the growing (5,) and the decreasing (S-) modes, 

(8) 

two linearly 

and 

s- 0~ (1 + %)ln[[i z $z T :I - 3(l+ Y)l’** 

These solutions were originally obtained by Meszarosl”] and by Groth and Peeblesl”i. 

Some of their properties are discussed in references [ 151 and [l 81. 

So far our cosmological model behaves as the standard one. However, as the 

universe expands, the usrn term in the field equations becomes more and more no- 

ticeable. The model begins to deviate from the standard CDM model when the scale 
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factor reaches the value aM = a~( e)‘--,the value of a when conserved radiation 

and x-component contribute equally to the energy density. In fact, around this epoch 

CDM ( the uw3 term in (5) and (6) ) effectively dominates the dynamics. However, 

neglecting now the x-component is no longer a good approximation. Instead, for 

a > UM , a more accurate procedure would be to neglect the us4 term in (5) and (6). 

We are now in the second regime, dominated by matter and vacuum and its decay 

products. Eq. (7), for the evolution of the density contrast, will now be written as, 

(3 - m)*( 1 + w)w*S” + (3 - m) 
[ 
(y - m) + 45 - $ )I 7.~6’ - %6 = 0, (9) 

where we introduced the new variable 2u = ($)3-m, with ad = (v)k denoting the 
20 

value of the scale factor for the CDM and x-component energy density equality. In 

(9) derivatives are taken with respect to w . 

We stress that, as in the earlier radiation-matter era, perturbations in the radiation 

component oscillate and in average can be taken equal to zero. Further, as remarked 

before, the present interest in a A term arises mainly as a way to conciliate the 

theoretical appeal of the inflationary models with observations, which suggest !A,, 21 

0.2. The vacuum component is usually assumed to be smooth, otherwise it would be 

detected by the dynamical methods contributing for the effective value of the density 

parameter. Hence, in (9), possible perturbations in the cosmological term were also 

neglected. 

The solutions of (9) can be expressed in terms of the hvpergeoxnetric function .” 

Fh f4 c, 4 =4 

A+cud=F 
6-m ll-2m 

3-m’6-2m’ 6-2m’-w (10) 

and 
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A- aw-Z=kF 3 l-m l-2m _ 
6-2m’6-2m’6-2m’-w (11) 

Note that when m = 0 we recover the subhorizon solutions for CDM and a cosmolog- 

ical constant~151~~1s~~1gl, now expressed in terms of hypergeometric functions. Again, if 

m = 2, the CDM open modell’51*1181 so u ions are reobtained. It is easy to show that 1 t’ 

for UI << 1 (a << ad) we obtain the standard result, 

-L 
A, oc WJ-m oc a (12) 

and 

A- o( W-&K a a-f. (13) 

With the solutions (10) and (11) we can construct the peculiar velocity field. In the 

linear regime, by taking only the growing mode during the matter and x-component 

regime, we havel151 

2 2-T = -f, 3HR, 

where 7 is the peculiar acceleration and 

a aA+ 
f=-- 

A+ da (14) 

is the Peebles dimensionless function. Neglecting the conserved radiation component 

we can write the variable w as w = e and rewrite (14 ) as, 

f Orn aA+ 
= -(3 - m)(l - ““)aan. 

+ m 
(15) 

From the behavior of the logarithmic plot of f as a function of fl, (figure 1) 

we can see that it is a good approximation to take f N (12,)“. To better illustrate 

. 
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this fact we also show in figure (2) the parameter n = & as a function of nmfor . 
m = 0,l and 2. In the limit !J m 2 1 two previous results present in the literature can 

be recovered. If m = 2 [131, we obtain f z L?z7 and if m = O120], we have f N n”,lll . 

If m = 1, we get f N !Jzg. Th ese are special cases of the general expression 

f N (fl,)i+ (16) 

obtained by espanding eq.( 15) around 0, = 1. 

By using R, = 1+1- 
*h+zP-3 ’ 

the variation off as function of the redshift z can 

also be constructedi lgJOl. As shown in figure (3), if t << 1 , there is no appreciable 

difference between models with the same a,,. So, although the dynamical methods 

allow the determination of a,, by measuring the peculiar velocity of objects at low 

redshift, it will not be possible to distinguish between models with different value of 

m. In the future, however, the situation may change if a more precise value of Qrno 

is achieved and if it becomes possible to perform similar tests at higher redshifts.[20] 

4 Power Spectrum 

Finally, we want to obtain the power spectrum and to compare the result for 

different vacuum decay rates (different values of m). To do this, we need to know how 

the perturbations with different wavelengths evolve from some given initial spectrum 

to the final spectrum (at some later time tf). Basically, this evolution will include 

a stage in which the perturbation is still outside the horizon and the Newtonian 

equation we have solved must be replaced by its relativistic counterpart. Since we 

want to focus on the relative behavior of different values of m, we consider a simplified 

assumption. The spectrum is considered to be a power law at the horizon entrance 

(te,,Ler), that is: 
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K&te,) = AX” 

For (Y = 3/2, this corresponds to the scale invariant spectrum, which is predicted by 

some inflationary models. In fact, the evolution of the perturbation is affected by the 

cosmological term mainly after its domination over matter. Since this happens very 

late in the evolution the Universe, for almost all scales of interest, the perturbation 

is inside the horizon when the x-component dominates and the Newtonian equation 

is enough to study its growth. Besides, when the x-component is dominating, we 

generically expect that the largest wavelengths will gradually leave the horizon, as it 

happens during the inflationary period ‘. Wavelengths that remain inside the horizon 

up to tf were already inside when the matter domination finished, and the effect of the 

x-component on their growth is computed by (i). For these reasons, the simplification 

made by the choice (17) does not interfere substantially with the relative evolution 

for different values of m. 

Taking (17) with Q = 3/2 as the initial spectrum, we consider tenter as a function 

of X given by the condition: 

Whet) = l Wtenter) 
For a = aM, we denote the solution of (18) by AM. Thus, AM is the wavelength that 

cross the horizon when conserved radiation and x-component balance their contribu- 

tions to the total energy density. For those wavelengths that cross the horizon after 

a~, that is X > X M, the perturbation grows with A+ after the horizon entrance. For 

those with X < X M, perturbations grow with S+ after the horizon crossing until UM, 

‘This is strictly true for m = 0, m = 1.0 but for m = 2.0 a few wavelengths do enter the horizon 
after vacuum domination 
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when this solution must be matched to the solutions of (9) to give the final growth 

factor. 

By using the top hat window function, the normalization is chosen (for all values 

of m) by setting the root-mean-square mass fluctuation within spheres of radius r,, = 

8h-‘Mpc to be equal unity, 

6M 
<(- M) 2 >:~~*h4~pc= 1. 

The results are shown in figure 4 for both 0,, = 0.2 and Q,, = 0.4 together with 

the minimal cold dark matter model, 0,s = 1.0 (no baryons). As compared with 

this minimal cold dark matter model, we observe the expected decreasing power on 

the small scales and the increasing power on large scales for all values of m. Since 

h2Cl,o is the same for all m’s, we have the same X,, in all cases and the bend in the 

power spectrum occurs at the same point. For scales larger than Xeqr the three curves 

become distinct, showing a faster decrease for larger values of m, but, roughly, they 

all show a more favorable behavior with more power on large scales than the minimal 

cold dark model. 
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Figure Captions 

Figure 1: The loglog plot of f as a function of $I,,., is shown for m = 0, 1 and 2. 

Figure 2: The parameter n = & is displayed as a function of R, for m= 0, 1 

and 2. Note that, for values of m larger than 0.05 , n is roughly constant, indicating 

that, in this limit, f = (0,)” is a good approximation. 

Figure 3: The variation off as a function of the redshift z is displayed for two values 

of the present density parameter (!I,, = 0.2 and 0,,,a = 0.4) and the assigned values 

of m. For z << 1 the difference among models with the same SZ,,,e is very small: 

these models can not be distinguished by the present measurement accuracy. 

Figure 4: Power spectra for minimal CDM (S-l?,, = 1.0) and CDM with decaying 

cosmological term in two cases: SIrno = 0.2 and s2,c = 0.4. The decay rate changes 

for different values of m (0, 1 and 2). For all models the spectra are normalized using 

the top hat function with TO = 8h-‘Mpc. 
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